Growth under Red Light Enhances Photosystem II Relative to Photosystem I and Phycobilisomes in the Red Alga Porphyridium cruentum.
نویسندگان
چکیده
Acclimation of the photosynthetic apparatus to light absorbed primarily by photosystem I (PSI) or by photosystem II (PSII) was studied in the unicellular red alga Porphyridium cruentum (ATCC 50161). Cultures grown under green light of 15 microeinsteins per square meter per second (PSII light; absorbed predominantly by the phycobilisomes) exhibited a PSII/PSI ratio of 0.26 +/- 0.05. Under red light (PSI light; absorbed primarily by chlorophyll) of comparable quantum flux, cells contained nearly five times as many PSII per PSI (1.21 +/- 0.10), and three times as many PSII per cell. About 12% of the chlorophyll was attributed to PSII in green light, 22% in white light, and 39% in red light-grown cultures. Chlorophyll antenna sizes appeared to remain constant at about 75 chlorophyll per PSII and 140 per PSI. Spectral quality had little effect on cell content or composition of the phycobilisomes, thus the number of PSII per phycobilisome was substantially greater in red light-grown cultures (4.2 +/- 0.6) than in those grown under green (1.6 +/- 0.3) or white light (2.9 +/- 0.1). Total photosystems (PSI + PSII) per phycobilisome remained at about eight in each case. Carotenoid content and composition was little affected by the spectral composition of the growth light. Zeaxanthin comprised more than 50% (mole/mole), beta-carotene about 40%, and cryptoxanthin about 4% of the carotenoid pigment. Despite marked changes in the light-harvesting apparatus, red and green light-grown cultures have generation times equal to that of cultures grown under white light of only one-third the quantum flux.
منابع مشابه
Stoichiometry of Photosystem I, Photosystem II, and Phycobilisomes in the Red Alga Porphyridium cruentum as a Function of Growth Irradiance.
Cells of the red alga Porphyridium cruentum (ATCC 50161) exposed to increasing growth irradiance exhibited up to a three-fold reduction in photosystems I and II (PSI and PSII) and phycobilisomes but little change in the relative numbers of these components. Batch cultures of P. cruentum were grown under four photon flux densities of continuous white light; 6 (low light, LL), 35 (medium light, M...
متن کاملPhycobilisome Mobility and Its Role in the Regulation of Light Harvesting in Red Algae.
Red algae represent an evolutionarily important group that gave rise to the whole red clade of photosynthetic organisms. They contain a unique combination of light-harvesting systems represented by a membrane-bound antenna and by phycobilisomes situated on thylakoid membrane surfaces. So far, very little has been revealed about the mobility of their phycobilisomes and the regulation of their li...
متن کاملAction Spectra for Photosystems I and II in Formaldehyde Fixed Algae.
Action spectra were obtained for photosystems I and II in chemically fixed algal cells and for photosystem I in unfixed lysozyme treated cells. Untreated algal cells yielded neither of the 2 light reactions with the reaction mixtures used. The action spectra for photosystem I in the blue-green alga Anacystis nidulans and red alga Porphyridium cruentum follow the absorption spectrum of chlorophy...
متن کاملEffective Absorption Cross-Sections in Porphyridium cruentum: Implications for Energy Transfer between Phycobilisomes and Photosystem II Reaction Centers.
Effective absorption cross-sections for O(2) production by Porphyridium cruentum were measured at 546 and 596 nanometers. Although all photosystem II reaction centers are energetically coupled to phycobilisomes, any single phycobilisome acts as antenna for several photosystem II reaction centers. The cross-section measured in state I was 50% larger than that measured in state II.
متن کاملEffects of Chromatic Adaptation on the Photochemical Apparatus of Photosynthesis in Porphyridium cruentum.
Cells of Porphyridium cruentum were grown in different colors of light which would be absorbed primarily by chlorophyll (Chl) (red and blue light) or by the phycobilisomes (green or two intensities of cool-white fluorescent light), and samples of these cells were frozen to -196 C for measurements of absorption and fluorescence emission spectra. Cells grown in the high intensity white light had ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 93 3 شماره
صفحات -
تاریخ انتشار 1990